Representation of Secondary Organic Aerosol Laboratory Chamber Data for the Interpretation of Mechanisms of Particle Growth

JESSE H. KROLL AND JOHN H. SEINFELD*

Departments of Environmental Science and Engineering and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

Absorptive models of gas-particle partitioning have been shown to be successful in describing the formation and growth of secondary organic aerosol (SOA). Here the expression for particle growth derived by Odum et al. (Odum, J. R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R. C.; Seinfeld, J. H. Gas/particle partitioning and secondary organic aerosol yields. *Environ. Sci. Technol.* 1996, 30, 2580–2585) is extended to facilitate interpretation of SOA growth data measured in the laboratory in terms of the underlying chemistry, even when details of the reactions are not well-constrained. A simple (one-component) expression for aerosol growth (ΔM) as a function of the amount of hydrocarbon reacted (ΔHC) is derived, and the effects of changes to three key parameters, stoichiometric yield of condensable species, gas-particle partitioning coefficient, and concentration of preexisting aerosol, are discussed. Two sets of laboratory chamber data on SOA growth are examined in this context: the ozonolysis of α-pinene and the OH-initiated photooxidation of aromatic compounds. Even though these two systems have a number of significant differences, both are described well within this framework. From the shapes of the ΔM versus ΔHC curves in each case, the importance of poorly constrained chemistry such as heterogeneous reactions and gas-phase reactions of oxidation products is examined.

Introduction

Secondary organic aerosol (SOA), particulate matter formed by the condensation of oxidation products of volatile organic compounds (VOCs), is known to constitute a substantial fraction of fine particulate matter in the lower atmosphere. Considerable effort has been devoted to gaining a detailed, quantitative understanding of the formation and growth of SOA in the troposphere, but this has been hampered by difficulties in identifying the individual chemical components of SOA. Even a single precursor hydrocarbon generally yields a large number of condensable products, many of which may not have been identified in laboratory studies. This lack of speciated aerosol data has made it difficult to model aerosol growth accurately from first principles using detailed treatments of gas-phase chemistry and gas-particle partitioning.

Such problems may be partly overcome by describing SOA formation not in terms of its individual components but rather in terms of total particle growth. Absorptive models of gas-particle partitioning ($1-3$) have been successful in describing laboratory SOA yields and in incorporating such yield measurements into atmospheric models (e.g., ref 4). Such absorptive models generally treat SOA growth as a purely microphysical process in which low-volatility, first-generation VOC oxidation products partition between the gas and absorbing particle phases.

There is now substantial evidence that SOA growth may also be influenced by heterogeneous reactions, so that the condensation of some organics may be reactive as well as absorptive. Such evidence includes the observation of increased aerosol yields under acidic conditions ($5-9$) and the measurement of high-MW oligomers in SOA ($7-11$). Although the evidence that heterogeneous reactions may contribute to SOA growth is strong, the reactions themselves remain poorly understood. The detailed chemistry (kinetics, thermodynamics, mechanism) is generally poorly constrained, and significant discrepancies exist between the results from experimental and theoretical studies ($5,12$). Therefore, currently it is difficult to assess the influence of heterogeneous reactions on SOA growth quantitatively.

The gas-phase chemistry prior to gas-particle partitioning is believed, in addition, to be significantly more complicated than the formation of condensable products from a single oxidation step. For example, SOA formed in the photooxidation of aromatic hydrocarbons includes compounds such as cyclic anhydrides, organic acids, and polycarbonyls ($13-16$), highly oxidized compounds that probably are not produced directly in the initial reaction of the parent aromatic hydrocarbon. Instead, they are likely to be formed by photolysis or gas-phase reactions (with OH, NO$_3$, or O$_3$) of the first-generation products. Such chemistry is currently not well understood, and the relative importance of second-generation products (as well as third-generation products, etc.) as contributors to SOA growth is virtually unknown.

In summary, the chemistry following the initial oxidation reaction of the precursor VOC, in both the gas and particle phases, is poorly constrained, and so its role in SOA formation and growth is not clear at present. In this paper, we present a framework for the representation of laboratory SOA growth data in order to facilitate interpretation of results in terms of such underlying chemistry. This framework is based upon a simple extension of the expression derived by Odum et al. (1) for describing aerosol yield from absorptive gas-particle partitioning. Using an illustrative (one-product) form of this expression, which we show to be a reasonable approximation to the two-component solution, we focus on the dependence of aerosol growth on the concentration of the parent hydrocarbon reacted. This dependence is shown to be affected by changes in three key parameters: the stoichiometric yield of condensable species, the gas-particle partitioning coefficient, and the concentration of preexisting aerosol. We then examine two sets of experimental data on SOA growth within the context of this framework, α-pinene ozonolysis and photooxidation of aromatic compounds. Although these two cases have significant differences, we show that both can be described using the same general framework outlined here.

Partitioning Model. The absorptive gas-particle partitioning model developed by Pankow ($2,3$) has been applied to SOA formation and growth by Odum et al. (1), leading to an expression for aerosol yield (Y), defined as the ratio of
aerosol growth to hydrocarbon reacted:

$$Y = M \sum_i \frac{\alpha_i K_i^*}{1 + K_i^* M}$$

(1)

in which M is the mass concentration of the absorbing (aerosol) medium, α_i is the (mass-based) stoichiometric coefficient for oxidation product i, and K_i^* is the gas-particle partitioning equilibrium constant for product i. We omit the "o" subscript (denoting "organic") used by Odum et al. (1) to indicate that the absorbing medium may also be water in the case of water-soluble compounds (17).

In writing eq 1, we do not use the absorbing equilibrium constant K_p (2) but rather a total gas-particle partitioning equilibrium constant, K^*, which may include contributions from partitioning by both physical absorption and heterogeneous chemical reaction. Although it has typically been assumed that only absorptive partitioning occurs, this assumption is not necessary for the derivation of eq 1 (1). In the simple case of only physical partitioning of a single compound between the gas and aerosol phases ($X(g) \rightarrow X(a)$), the absorbing equilibrium constant may be expressed as

$$K_p = \frac{C_{X(a)}}{MC_{X(g)}} = \frac{C_{X(g)} + C_{X(a)}}{MC_{X(g)}} = K_p(1 + K_{\text{res}})$$

(2)

For more complex reactions, such as dimerization of the condensed species, such a simple expression for K^* may not exist, but even so, K^* will always be greater than K_p (as long as the products of the heterogeneous reactions are less volatile than the reactants). For the case of water-soluble compounds partitioning into aqueous particles, K_p may be replaced by K_{res}, Henry’s Law constant, and K^* may be replaced by K_p, the “effective Henry’s Law constant” (18).

Although eq 1 has proved useful for interpreting laboratory SOA yield data, the effects of heterogeneous chemistry and reactions of first-generation oxidation products on SOA growth are not immediately obvious in that relation. In addition, for laboratory studies of the gas-particle partitioning of individual hydrocarbons, aerosol yield, as defined above, is not a particularly meaningful quantity. Instead, eq 1 can be rewritten as

$$\frac{\Delta M}{\Delta HC} = \frac{M(0) + \Delta M}{M(0) + \Delta M} \sum_i \frac{\alpha_i K_i^*}{1 + K_i^* (M(0) + \Delta M)}$$

(4)

in which yield has been replaced by $\Delta M/\Delta HC$ (change in aerosol mass concentration divided by change in parent hydrocarbon concentration) and M by $M(0) + \Delta M$ (preexisting aerosol mass concentration plus change in aerosol mass concentration). The preexisting aerosol mass concentration, $M(0)$, refers only to the fraction of particulate matter that participates in absorptive partitioning (typically organic mass, but also aqueous mass in the case of water-soluble organics) and not to inert mass, such as solid ammonium sulfate. Equation 4 may then be solved for ΔM for any number of condensable products i. It has been shown (1, 19–21) that laboratory data on SOA formation and growth are generally well-described when just two components are used, with one component usually significantly less volatile than the other.

The two-component form of eq 4 is cubic in ΔM and has a very complicated solution (shown in the Supporting Information). However, the solution is substantially simpler when $M(0) = 0$; that is, no absorbing aerosol is present initially, which is the case for most chamber studies of SOA formation and growth. The (physical) solution in that case is as follows:

$$\Delta M = \frac{1}{2K_1^*} \left(K_1^* \Delta HC(a_1 + a_2) - 1 + \sqrt{1 + 2K_1^* \Delta HC(a_2 - a_1) + (K_1^* \Delta HC(a_1 + a_2))^2} \right)$$

(5)

Although growth data may be fitted to this expression (22), it may be simplified further. As noted above, in the two-component treatment of SOA growth one component is significantly less volatile than the other. If we treat the second component (with coefficients K_2^* and a_2) as highly nonvolatile, then this expression for aerosol growth may be simplified further. At high values of K_2^*, eq 5 reduces to

$$\Delta M = \frac{1}{2K_1^*} \left(K_1^* \Delta HC(a_1 + a_2) - 1 + \sqrt{1 + 2K_1^* \Delta HC(a_2 - a_1) + (K_1^* \Delta HC(a_1 + a_2))^2} \right)$$

(6)

At high values of ΔHC, ΔM increases linearly with ΔHC, with the proportionality defined by the stoichiometric coefficients ($a_1 + a_2$), as in the one-component solution (discussed below). At low values of ΔHC, because component 2 is assumed to partition fully into the aerosol phase, it may be approximated as the “preexisting aerosol mass.” Substituting $a_2 \Delta HC$ (the amount of component 2) in eq 6 with $M(0)$, we obtain

$$\Delta M = \frac{1}{2K_1^*} \left(K_1^* a_2 \Delta HC + \frac{K_1^* M(0) - 1}{M(0) + \Delta M} + \sqrt{1 + 2K_1^* M(0) - K_1^* \Delta HC} \right)$$

(7)

This expression is very similar to the solution to the one-component form of eq 4 (in which $M(0)$ may be nonzero):

$$\Delta M = \frac{1}{2K_1^*} \left(K_1^* \Delta HC - K_1^* M(0) - 1 + \sqrt{4K_1^* M(0) - K_1^* \Delta HC} \right)$$

(8)

(for clarity, the subscript “o” has been removed). Equations 7 and 8 differ only in the sign of the $K^* M(0)$ term, which is typically small compared to the others. Thus eq 8, the one-component solution to eq 4, serves as a reasonable approximation to the two-component solution, with the effect a second, less volatile SOA component approximated by assuming it partitions fully into the aerosol phase, thereby contributing to the constant $M(0)$.

Shown in Figure 1a–c are typical curves of ΔM versus ΔHC arising from eq 8 for a range of values of $M(0)$, K^*, and a. Curves of similar shape have been reported from chamber studies of SOA formation (e.g., refs 22–24) as well as from theoretical simulations of particle growth (25, 26). Plotting
condensable products are formed in subsaturated concentrations and the amount of absorbing medium present is critical for aerosol growth. At higher values of ΔHC, in which condensable products are formed in excess of their saturation concentration, all of the condensable products formed will partition into the aerosol phase so that ΔM depends linearly on ΔHC and is independent of $M(0)$. In this case, where $M(0) \ll \alpha \Delta HC$, eq 8 reduces to

$$\Delta M = \alpha \Delta HC - \frac{1}{K^*}$$

(9)

Hence, most of the curves in Figure 1a converge at high values of ΔHC. As discussed above, the linear dependence of ΔM on ΔHC at high values of ΔHC occurs even when more than one condensable compound is formed.

In the special case where the concentration of the absorbing medium is very large relative to any aerosol growth ($M(0) \gg \Delta M$), the one-component form of eq 4 instead reduces to

$$\Delta M = \frac{K^* M(0)}{1 + K^* M(0)} \alpha \Delta HC$$

(10)

In this case, particle growth is linear with the amount of hydrocarbon reacted for all values of ΔHC, shown as a dashed line in Figure 1a. This case is rarely valid for laboratory studies of SOA growth, as most either involve no initial aerosol or start with only inorganic (nonabsorbing) seed particles; one exception is uptake studies of water-soluble organic compounds (WSOCs) by aqueous particles (27). However, particle growth in the atmosphere may often occur under conditions in which preexisting organic aerosol concentration is large relative to ΔM and a characteristic particle growth per amount of hydrocarbon reacted may be estimated. This characteristic growth from the oxidation of a particular hydrocarbon, or "incremental aerosol reactivity", has been discussed in detail by Griffin et al. (28).

Shown in Figure 1b is the effect of changes in K^*, the total gas-particle partitioning coefficient of the condensable oxidation product. Gray lines in Figure 1b and c show limiting behavior at high ΔHC, as described by eq 9. See text for details.

ΔM versus ΔHC using the exact two-component solution (eq 5) yields curves that are very similar to these. Therefore, for simplicity, when examining the dependence of aerosol growth (ΔM) on the amount of parent hydrocarbon reacted (ΔHC), we will refer to this one-component solution. Although it is not an exact description of SOA growth for two components, it captures the qualitative behavior of the two-component solution to eq 4, allowing for the interpretation of mechanisms of particle growth from experimental data.

In Figure 1a, the dependence of growth on the concentration of the preexisting absorbing (aerosol) medium, $M(0)$, is shown. In the absence of an initial absorbing phase ($M(0) = 0$), a compound will partition into the particle phase only if its concentration is in excess of its saturation vapor pressure, as shown in the bottom rightmost curve. If $M(0)$ is nonzero (or, in the two-component solution, if the less volatile component has partitioned strongly into the particle phase), some partitioning may occur even when the compound is formed in quantities below its equilibrium vapor pressure, as described by Pankov (2, 3). Hence, the effects of changes in $M(0)$ are most pronounced at low values of ΔHC, in which α refers to stoichiometric coefficients of condensable products only. As described in the Introduction, noncondensing compounds may be formed first, which then

![FIGURE 1. Characteristic plots of aerosol growth (ΔM) vs hydrocarbon reacted (ΔHC). (a) Effect of changes in $M(0)$, the concentration of preexisting absorbing medium in the aerosol phase. Dashed line is the special case where $M(0) \gg \Delta M$. (b) Effect of changes in K^*, the total gas-particle partitioning coefficient of the condensable oxidation product. (c) Effect of changes in α, the stoichiometric yield of the condensable species. Gray lines in Figure 1b and c show limiting behavior at high ΔHC, as described by eq 9. See text for details.](image)
react further to form condensable ones. If changes in reaction conditions lead to significant differences in the relative importance of these further reactions, then the final product distributions may be affected. One example is the case in which a first-generation oxidation product, P_1, may undergo reactions with one of several oxidants present:

$$\text{HC} + \text{OH} \rightarrow \alpha_1 \text{P}_1 + ...$$

$$\text{P}_1 + \text{OX1} \rightarrow \alpha_2 \text{P}_2 + ...$$

$$\text{P}_1 + \text{OX2} \rightarrow \alpha_3 \text{P}_3 + ...$$

If only one of the second-generation products, P_2, is condensable, then the overall yield (α) of condensable compounds depends not only on stoichiometric coefficients of the individual reactions (α_1 and α_2) but also on the relative importance of the two possible oxidation channels of product P_1. This branching is dependent on the relative concentrations of oxidants OX1 and OX2 so that overall yield (α) and therefore particle growth may be highly dependent on specific reaction conditions. This can be the case even if the initial oxidation step is unaffected; we discuss specific examples in a later section.

We have used a simple (one-component) solution to the partitioning equation derived by Odum et al. (1) to express total organic aerosol growth (ΔM) as a function of the amount of parent hydrocarbon reacted (ΔHC). Three key parameters, the initial amount of absorbing medium in the aerosol phase ($M(0)$), the total gas-particle partitioning coefficient of the condensable oxidation product (K_p), and the stoichiometric yield of the condensable oxidation product (α), each affect the dependence of ΔM on ΔHC in a characteristic fashion. Although we have focused on only one of these parameters, such responses are general to two-component systems as well. From these characteristic responses, it is then possible to gain an improved mechanistic understanding of the factors that control particle growth, by plotting experimental values of ΔM versus ΔHC obtained with different hydrocarbons or under different reaction conditions.

In the next section we use this framework to examine two sets of laboratory chamber SOA growth data. In the first set, formation of SOA from the ozonolysis of α-pinene, growth is found to depend on composition of the seed aerosol; in the other, growth from the photooxidation of aromatic compounds varies with NOx concentration. Both data sets are well described using this general framework, allowing us to examine the importance of heterogeneous chemistry and gas-phase reactions of first-generation oxidation products on SOA growth.

Ozonolysis of α-Pinene. Gao et al. (8, 9) have presented aerosol growth data from the prototypical SOA-forming reaction of α-pinene with ozone, measured over a range of α-pinene concentrations and using two different seed compositions. Experiments were carried out in the dark in Caltech’s dual 28-m3 Teflon chambers using seed particles of different acidity: 0.03 M MgSO$_4$ seed solution for the “neutral” experiments and 0.03 M MgSO$_4$ + 0.05 M H$_2$SO$_4$ for the “acidic” experiments. The neutral and acidic seeds had calculated pH values of 6.5 and ~3.0, respectively (8); experiments were repeated for a range of α-pinene concentrations (12–135 ppb) for both types of seed. All of the experiments were carried out at 55% relative humidity.

Experimental data, plotted as ΔM versus ΔHC for both seed types, are shown in Figure 2. Values for ΔM were obtained by multiplying the total aerosol volume as measured by the DMA by an assumed density of 1.4 g/mL. Experiments were carried out over a range of initial particle mass concentrations (30–63 μg/m3); no dependence of ΔM on the initial particle mass was observed.

![FIGURE 2. Aerosol growth (ΔM) as a function of α-pinene reacted (ΔHC) in the α-pinene + ozone reaction, for both neutral seed (gray triangles) and acidic seed (black squares). Dashed lines are linear fits to the high-ΔHC (>250 μg/m3) data.](image)

For both the acidic and neutral seeds, the curves of SOA growth (ΔM) versus α-pinene reacted (ΔHC) are of the same general form as those shown in Figure 1. For a given amount of α-pinene reacted, the growth of SOA is always greater on acidic seed than on the more neutral seed, indicating a larger partitioning coefficient (K_p); indeed the shapes of these curves are similar to those shown in Figure 1b. Because the gas-phase products of the ozonolysis reaction are independent of seed composition, equilibrium absorption coefficients (K_p’s) are the same in both cases; therefore, the greater partitioning into the aerosol phase observed with acidic seed must be a result of an increased importance of heterogeneous reactions. Linnuma et al. (7) and Gao et al. (8, 9) have observed that the proportion of high-MW (oligomeric) products in α-pinene ozonolysis SOA is larger with more acidic seed, also strongly suggesting that heterogeneous reactions play a greater role in particle growth under acidic conditions.

Although the data presented in Figure 2 may be fit to eq 8, nearly as much information can be obtained by focusing on the high values of ΔHC (>250 μg/m3). For both the neutral and acidic seed, measured values of ΔM are linear with ΔHC, as described by eq 9 (and illustrated in Figure 1b). Fitting just those data, we obtain fits of $\Delta M = 0.645\Delta HC - 53.7$ for the acidic seed and $\Delta M = 0.628\Delta HC - 77.2$ for the neutral seed. The derived values of the stoichiometric coefficients (α, slopes of the lines) agree to within 3%, consistent with the fact that they should be independent of seed type. At these high values of ΔHC, there is a constant difference in ΔM of ~25 μg/m3 between the neutral and acidic seeds, independent of ΔHC. This may at least partly explain the observed decrease in relative yield difference (RYD) between the two types of seed as ΔHC increases (8). Because aerosol yield is defined as the ratio of aerosol growth to hydrocarbon reacted, a fixed difference between values of ΔM will appear as a decreasing yield difference at increasing values of ΔHC.

From the intercepts, equal to $1/K_p$, the total partitioning equilibrium coefficient, K_p, is calculated to be ~45% greater with acidic seed than with neutral seed. As mentioned above, this difference most likely arises from the increased importance of heterogeneous reactions in the acidic case. However, the cause of this difference is not entirely clear, and details of the heterogeneous chemistry are poorly constrained. Reactions believed to be responsible for oligomer formation, such as aldol condensation, dehydraion, and acetal/hemiacetal formation, are known to be acid-catalyzed, but this implies a difference in kinetics only. Although a difference in the rate of particle growth between the acidic and neutral...
cases is indeed observed (8), a difference in total growth is observed to continue over long times, which simple differences in heterogeneous reaction rates cannot explain. The difference in total growth may arise from other factors, such as differences in ionic strength; further studies are certainly necessary.

Photooxidation of Aromatic Compounds. The radical-initiated oxidation of aromatic compounds, a major contributor to SOA formation in anthropogenically dominated environments, has been studied extensively in terms of both aromatic compounds, as measured by Odum et al. (19). Symbol color indicates level of alkyl substitution: monosubstituted (black), disubstituted (gray), or tri- and tetrasubstituted (open). In some cases, isomers are lumped together (as in the case of o-, m-, and p-xylene), which accounts for much of the observed scatter for a single aromatic.

The general shapes of the ΔM versus ΔHC curves for aromatic compounds in Figure 3 are fundamentally different from those in Figure 2 for α-pinene ozonolysis. In Figure 2, particle growth is observed even at very low amounts of reacted hydrocarbon, but for most of the compounds shown in Figure 3, the curves suggest negligible aerosol growth at such low concentrations. This case is represented in Figure 1a by the $M(0) = 0$ case (lower rightmost curve), indicating that, unlike in the case of α-pinene ozonolysis, there are no highly nonvolatile reaction products that immediately partition into the particle phase upon reaction initiation. Therefore, an organic aerosol phase into which other semivolatile compounds can partition will not form until later in the reaction, when a threshold concentration of reacted hydrocarbon has been reached.

This threshold concentration (or “latent consumption”) has been observed in other studies of photooxidation of aromatic compounds as well (22–24), as a time lag (typically an hour or more) between reaction initiation and aerosol growth. As discussed by Hurley et al. (24), such a time lag may be a result of either of two factors: all condensable products are formed in concentrations below their saturation vapor pressures, so they do not partition into the aerosol phase (this includes the less volatile compound in the two-component model), or condensable products are formed as second-generation products. Assuming the reaction conditions are constant, the latter effect is a purely kinetic one: given sufficient time, the same amount of aerosol will be formed, regardless of whether it is from condensation of first- or second-generation products (25).

Changes in reaction conditions, however, may affect the relative concentrations of different oxidants so that the gas-phase chemistry of first-generation products may be affected. For example, both Hurley et al. (24) and Song et al. (22) have shown that for the OH-initiated oxidation of aromatic compounds (toluene and m-xylene, respectively) aerosol yields are highly dependent on gas-phase reaction conditions, even for a fixed amount of hydrocarbon reacted and in the absence of seed particles. For a given amount of aromatic reacted, SOA growth is suppressed strongly by increased levels of NO$_x$. In these cases, the differences in the ΔM versus ΔHC curves for toluene photooxidation under low- and high-NO$_x$ conditions are consistent with changes in the stoichiometric coefficient, ξ, with different slopes at high values of ΔHC (as in Figure 1c). As described in a previous section, the stoichiometric yields may vary if changes in reaction conditions affect the branching ratios in multistep reaction mechanisms.

This is likely to be the case when [NO$_x$] is varied in chamber studies of SOA growth by UV irradiation of hydrocarbon mixtures. As discussed by Hurley et al. (24), changes in [NO$_x$] affect the relative concentrations of oxidants OH, NO$_3$, and O$_3$: high NO$_x$ levels would tend to increase NO$_3$ and suppress ozone (and, under some conditions, OH). The chemistry of first-generation oxidation products is poorly understood, but if they react with ozone (or OH) to produce a greater amount of condensable product than is formed in the reaction with the nitrate radical, particle growth should be greater at lower NO$_x$ concentrations, which is consistent with observations. Song et al. (22) showed that increased ozone or nitrate radical concentrations alone cannot explain the observed changes in SOA yields; therefore aerosol growth from first-generation oxidation products may be governed by a complex competition between reaction with those oxidants, reaction with OH, and photolysis. An alternate (though similar) possibility is that NO$_2$ concentration controls the fate of peroxy radical intermediates by changing the branching between reaction with NO and reaction with HO$_2$ or RO$_2$. Reaction with NO produces mostly alkoxyl radicals, which may decompose to smaller (and more volatile) compounds, whereas reaction with HO$_2$ or RO$_2$ may form acids, peracids, peroxydis, and alcohols, which may partition efficiently into the aerosol phase. In this case, the “first-generation products” are not the first set of molecular oxidation products but rather the peroxy radical intermediates formed from the initial OH-aromatic reaction.

In either case, stoichiometric yields (ξ) may change with reaction conditions when particle formation occurs via condensation of second-generation oxidation products. This
will not be the case if condensable products are purely first-generation: aromatic compounds are unreactive toward ozone and NO\(_3\) (29), so loss of hydrocarbon (\(\Delta H\)) is a result of reaction with OH only. Therefore, if only first-generation oxidation products were condensable, the stoichiometric coefficient (\(\alpha\)) would be independent of radical concentration.

It should be noted that in this case \(\alpha\) refers to the overall yield for an entire reaction mechanism rather than for a single step. Although studies of hydrocarbon oxidation over a wide range of experimental conditions may allow for the quantification of this overall yield for different radical concentrations, the use of stoichiometric yields for single reactions, which do not rely on a particular set of reaction conditions, would be ideal. This requires a better understanding of the chemistry of the first-generation reaction products; in particular, laboratory studies of particle growth from the reaction of such compounds with single oxidants would be very useful. Although such studies may be possible for relatively stable, isolable compounds identified as intermediates in VOC oxidation, in many cases the first-generation oxidation products cannot be isolated easily, or have not yet been identified. In these cases, in which stoichiometric coefficients can only be determined from the oxidation of the precursor VOC, it is especially important that experiments are carried out using HC/NO\(_3\) ratios and photon fluxes as close to tropospheric levels as possible.

Because we are currently not able to study (or even in some cases identify) many of the relevant intermediates and products in SOA formation, accurate modeling of the explicit chemistry leading to particle formation and growth is not yet possible. Simplified models of gas-particle partitioning, such as the Odum/Pankow partitioning model (5–8), are therefore necessary for describing laboratory growth data and applying them to atmospheric models. We have expanded this treatment so that it not only describes aerosol growth as a function of the amount of hydrocarbon reacted but also provides insight into the underlying chemistry of SOA formation. In particular, the importance of heterogeneous chemistry and further reactions of oxidation products may be assessed using this framework. The effects of such reactions often cannot be distinguished using the standard yield curve approach (22); however, such chemistry is currently not understood well enough for the explicit inclusion into full chemical models of SOA formation and growth. The approach described in this work allows for a better understanding of the contributions of such reactions, even when details of the reactions remain poorly constrained. We note that for this approach to be useful, SOA growth experiments need to be carried out over a wide range of hydrocarbon concentrations. Although time-dependent measurements of \(\Delta M\) versus \(\Delta H\) over the course of a single aerosol growth experiment (22–24) might be sufficient, this requires that the gas-phase chemistry of oxidation products goes to completion (and gas-particle partitioning equilibrium is reached) nearly instantaneously. Further work on the kinetics of these processes is necessary to establish whether applying the equilibrium approach described here to time-dependent data is appropriate.

Acknowledgments

This research was funded by the U. S. Environmental Protection Agency Science to Achieve Results (STAR) Program grant no. RD-83107501-0, managed by EPA’s Office of Research and Development (ORD), National Center for Environmental Research (NCER), and by U.S. Department of Energy Biological and Environmental Research Program DE-FG03-01ER63099. We are grateful to Nga L. Ng for helpful discussions.

Supporting Information Available

Two-component solution to eq 4. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

Received for review November 1, 2004. Revised manuscript received March 17, 2005. Accepted March 25, 2005.

ES048292H